Computation of generalized equivariant cohomologies of Kac-Moody flag varieties

نویسنده

  • Megumi Harada
چکیده

Abstract. In 1998, Goresky, Kottwitz, and MacPherson showed that for certain projective varieties X equipped with an algebraic action of a complex torus T , the equivariant cohomology ring H∗ T (X) can be described by combinatorial data obtained from its orbit decomposition. In this paper, we generalize their theorem in three different ways. First, our group G need not be a torus. Second, our space X is an equivariant stratified space, along with some additional hypotheses on the attaching maps. Third, and most important, we allow for generalized equivariant cohomology theories E∗ G instead of H∗ T . For these spaces, we give a combinatorial description of E∗ G (X) as a subring of ∏ E∗ G (Fi), where the Fi are certain invariant subspaces of X . Our main examples are the flag varieties G/P of Kac-Moody groups G, with the action of the torus of G. In this context, the Fi are the T -fixed points and E∗ G is a T -equivariant complex oriented cohomology theory, such as H∗ T , K∗ T or MU∗ T . We detail several explicit examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cohomology of line bundles on Schubert varieties in the Kac-Moody setting

In this paper, we describe the indices of the top and the least nonvanihing cohomologies H (X(w), Lλ) of line budles on Schubert varieties X(w) given by nondominant weights in the Kac-Moody setting. We also prove some surjective Theorem for maps between some cohomology modules.

متن کامل

A Positive Monk Formula in the S1-equivariant Cohomology of Type a Peterson Varieties

Peterson varieties are a special class of Hessenberg varieties that have been extensively studied e.g. by Peterson, Kostant, and Rietsch, in connection with the quantum cohomology of the flag variety. In this manuscript, we develop a generalized Schubert calculus, and in particular a positive Chevalley-Monk formula, for the ordinary and Borel-equivariant cohomology of the Peterson variety Y in ...

متن کامل

Equivariant K-chevalley Rules for Kac-moody Flag Manifolds

Explicit combinatorial cancellation-free rules are given for the product of an equivariant line bundle class with a Schubert class in the torus-equivariant K-theory of a KacMoody flag manifold. The weight of the line bundle may be dominant or antidominant, and the coefficients may be described either by Lakshmibai-Seshadri paths or by the λ-chain model of the first author and Postnikov [LP, LP1...

متن کامل

The two parameter quantum groups‎ ‎$U_{r,s}(mathfrak{g})$ associated to generalized Kac-Moody algebra‎ ‎and their equitable presentation

We construct a family of two parameter quantum grou-\ps‎ ‎$U_{r,s}(mathfrak{g})$ associated with a generalized Kac-Moody‎ ‎algebra corresponding to symmetrizable admissible Borcherds Cartan‎ ‎matrix‎. ‎We also construct the $textbf{A}$-form $U_{textbf{A}}$ and‎ ‎the classical limit of $U_{r,s}(mathfrak{g})$‎. ‎Furthermore‎, ‎we‎ ‎display the equitable presentation for a subalgebra‎ ‎$U_{r...

متن کامل

Affine Hecke algebras and the Schubert calculus

Using a combinatorial approach which avoids geometry, this paper studies the ring structure of KT (G/B), the T -equivariant K-theory of the (generalized) flag variety G/B. Here, the data G ⊇ B ⊇ T is a complex reductive algebraic group (or symmetrizable Kac-Moody group)G, a Borel subgroup B, and a maximal torus T , and KT (G/B) is the Grothendieck group of T -equivariant coherent sheaves on G/B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004